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Narrative Review
Could Alzheimer’s disease be a maladaptation of an evolutionary survival
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A B S T R A C T

An important aspect of survival is to assure enough food, water, and oxygen. Here, we describe a recently discovered response that favors survival in
times of scarcity, and it is initiated by either ingestion or production of fructose. Unlike glucose, which is a source for immediate energy needs, fructose
metabolism results in an orchestrated response to encourage food and water intake, reduce resting metabolism, stimulate fat and glycogen accumulation,
and induce insulin resistance as a means to reduce metabolism and preserve glucose supply for the brain. How this survival mechanism affects brain
metabolism, which in a resting human amounts to 20% of the overall energy demand, is only beginning to be understood. Here, we review and extend a
previous hypothesis that this survival mechanism has a major role in the development of Alzheimer’s disease and may account for many of the early
features, including cerebral glucose hypometabolism, mitochondrial dysfunction, and neuroinflammation. We propose that the pathway can be engaged in
multiple ways, including diets high in sugar, high glycemic carbohydrates, and salt. In summary, we propose that Alzheimer’s disease may be the
consequence of a maladaptation to an evolutionary-based survival pathway and what had served to enhance survival acutely becomes injurious when
engaged for extensive periods. Although more studies are needed on the role of fructose metabolism and its metabolite, uric acid, in Alzheimer’s disease,
we suggest that both dietary and pharmacologic trials to reduce fructose exposure or block fructose metabolism should be performed to determine whether
there is potential benefit in the prevention, management, or treatment of this disease.
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Introduction

Alzheimer’s disease (AD) is currently the sixth leading cause of
death and is characterized by cognitive decline and cerebral atrophy
associated with β-amyloid plaques and tau-protein aggregation
(neurofibrillary tangles) in neurons. Treatments to reduce β-amyloid
and/or tau protein aggregation carry promise but have generally not
been as successful as predicted [1], consistent with a prior hypothesis
[2] that more basic mechanisms may drive the disease. In this regard,
preclinical and early manifestations of AD include reduced cerebral
glucose metabolism, mitochondrial dysfunction, neuroinflammation,
and intracellular energy depletion. These observations have led to
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dietary, behavioral, and therapeutic strategies to improve metabolic
parameters with promising early results [3–5]. Nevertheless, the un-
derlying mechanism(s) driving AD, especially the late-onset sporadic
variant, is not fully understood.

Here, we extend our previous proposal that AD results from a mal-
adaptation to an evolutionary survival pathway that is used by many
animals and was even essential to the survival of our distant ancestors
millions of years ago [6]. A basic tenet of life is to ensure enough food,
water, and oxygen for survival. Although acute survival responses to
starvation [7] are well known, nature has developed a way to protect
animals before the crisis actually occurs [8]. We have previously shown
that this “survival response” is mediated by the metabolism of fructose
rotein E4; CMRglc, cerebral metabolic rate for glucose; CSF, cerebral spinal fluid; FDG-
orter; HFCS, high-fructose corn syrup; IR-A, insulin receptor A; Irs2, insulin receptor
hosphorylation; V1b, vasopressin 1b.
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TABLE 1
Features of the survival switch. The primary goal is to protect animals from
shortage of water, food, and oxygen

Features Mechanism Consequence

Hunger Stimulation of orexin Increased energy intake
Low hepatic ATP
Leptin resistance

Thirst An increase in serum
osmolality

Increase water intake
Increase serum
vasopressin

Foraging Inhibition of glucose
metabolism in regions of
the brain

Maximize the finding of
food

Reduced resting energy
metabolism

Suppression of
mitochondrial ATP
production with
stimulation of glycolysis

Decreased resting
energy metabolism

Fat storage Stimulation of
lipogenesis, inhibition

Fat accumulation in the
adipose tissue, blood,

R.J. Johnson et al. The American Journal of Clinical Nutrition 117 (2023) 455–466
that is either ingested or produced in the body [8]. Although biological
effects of fructose metabolism and its byproduct, intracellular uric acid,
appear critical for the survival of many animals in nature, including our
ancestors, in modern society, it appears to be overengaged, increasing
the risk for metabolic syndrome, obesity, diabetes, and other conditions
[9].

A key question is how the survival response affects brain meta-
bolism and function given that the brain has high energy requirements,
accounting for 20% of the daily amount of ATP used by the body
despite constituting only 2% of the body mass. Because much of the
protection of the survival pathway is mediated by a reduction in sys-
temic ATP production and usage [8], one might wonder whether the
survival switch also involves reducing brain energy expenditure so
long as critical brain function is supported. Here, we review evidence
that suggests that the survival pathway was beneficial in reducing the
risk of starvation but, in today’s environment, may predispose us to not
only obesity and diabetes but also AD.
of fatty acid oxidation,
and inhibition of
lipolysis

and liver

Maintain energy
delivery to the brain

Reduce glucose
utilization by muscle,
with deference for the
brain

Insulin resistance

Support the circulation
to assure nutrient
delivery

Increase BP by
vasoconstriction

Raise blood pressure

Increase salt absorption
in the gut and salt
reabsorption by the
kidneys

Induce salt sensitivity

Heighten innate immune
response

Stimulate low-grade
systemic inflammation

Increase uric acid and
inflammatory
biomarkers

Aid excretion of wastes
in the setting of poor
nutrient intake

Impair renal
autoregulation

Elevation of glomerular
hydrostatic pressure to
assist filtrationActivation of the renal

angiotensin system

BP, blood pressure.
A Survival Pathway Triggered by Fructose
Many foods are known to have physiological effects in addition to

their caloric content. For example, sugary beverages are particularly
associated with the development of obesity and diabetes [10], and this
has been proposed to be due to their fructose content [11, 12]. Indeed,
excessive fructose ingestion can induce all components of metabolic
syndrome [13]. This has been shown to be mediated by the ability of
fructose to raise intracellular uric acid levels (which can occur despite
no change in serum uric acid) [14] and to stimulate the synthesis and
release of vasopressin [11, 15–18] rather than from the caloric meta-
bolism of fructose.

Subsequent research has found evidence that animals in nature use
excessive intake and metabolism of fructose to activate a survival
response that prepares them for periods when food, water, or oxygen
may not be adequately available [8]. Specific features of the survival
switch are shown in Table 1. In general, the mechanism involves going
into a “low-power” mode in which both ATP production and usage are
reduced. This is accomplished by reducing energy metabolism at rest
[19] while allowing sufficient energy for critical activities, such as
foraging. Both food and water intake are encouraged by stimulating
hunger and arousal (likely via orexin), blocking satiety (by inducing
leptin resistance) and stimulating foraging [20–22]. The demand for
oxygen is reduced by slowing mitochondrial respiration, with a shift
toward glycolysis [23, 24]. The storage of fat and glycogen in the liver
is encouraged by stimulating their production and inhibiting fatty acid
oxidation, lipolysis, and glycogenolysis [15, 25, 26]. Glucose meta-
bolism in muscles is reduced by decreasing glucose uptake (via insulin
resistance) and inhibiting insulin secretion from the pancreas; this re-
duces total energy expenditure while providing more glucose to the
brain, where insulin is not fully required for uptake [27, 28]. Fructose
also stimulates the production of vasopressin in the hypothalamus [18],
which helps conserve water by reducing loss by driving urinary con-
centration. Vasopressin also directly contributes to metabolic syn-
drome, including the development of obesity, by engaging the
vasopressin 1b (V1b) receptor [16]. Accumulation of fat by vasopressin
is another mechanism by which vasopressin conserves water because
fat is a source of “metabolic” water when it is metabolized [29].

The cellular mechanism by which fructose induces the survival
program is unique. In essence, the 2 major simple sugars—glucose and
fructose—have opposing biologic effects. Glucose is the primary fuel
for immediate energy demands, whereas fructose provides for future
energy demands (Figure 1) [8]. Essentially, fructose causes a shift in
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cell metabolism such that the energy generated from the calories
ingested is preferentially stored as fat and glycogen instead of being
immediately used for ATP generation, a maneuver that preserves en-
ergy balance.

The biochemical mechanism driving the survival response is initi-
ated by the rapid depletion of ATP from the initial phosphorylation of
fructose by the enzyme fructokinase (also known as ketohexokinase
[KHK]) (Figure 1). The ATP levels are not immediately replenished
because fructose 1-phosphate pools because of a slower flux through
aldolase B. The cell responds to lower ATP levels by lowering AMP
levels to maintain the energy ratio. AMP degradation is mediated by
AMP deaminase-2 (AMPD2), which produces ammonia and, eventu-
ally, uric acid [30]. Uric acid translocates NADPH oxidase (nicotin-
amide adenine dinucleotide phosphate oxidase) to the mitochondria,
where it causes oxidative stress, reducing fatty acid oxidation (blocking
enoyl CoA hydratase) while inhibiting aconitase in the citric acid cycle
[15, 31]. Uric acid also inhibits AMP-activated protein kinase [25]. The
net effect is switching to a low-power mode in which production and
usage of ATP are slowed down while intracellular ATP levels remain
low [32].

The decline in intracellular ATP level functions as an alarm, initi-
ating processes that induce all features of metabolic syndrome [8]. The
3 primary drivers appear to be fructose, its byproduct uric acid, and
vasopressin; the latter being a driver primarily because of its actions on



FIGURE 1. The fructose survival pathway. Fructose is metabolized by fructokinase to generate fructose-1-phosphate, which is then metabolized like any
caloric sugar. However, the initial phosphorylation is associated with rapid ATP consumption with a decrease in intracellular phosphate that uniquely activates
AMP deaminase-2, which subsequently removes AMP to generate uric acid. In turn, uric acid translocatess NADPH oxidase (nicotinamide adenine dinucleotide
phosphate oxidase) to the mitochondria, leading to oxidative stress that blocks the citric acid cycle (via inhibition of aconitase) and fatty acid β-oxidation. As
mitochondrial function slows, glycolysis takes over, while uric acid inhibits AMP-activated protein kinase, reducing the ability to recover ATP. The effect is a
reduction in ATP in the cell, activating a survival switch that includes hunger, thirst, foraging, fat accumulation, and insulin resistance. Shaded numbered circles
show steps that assist in lowering ATP levels in the cell. BP, blood pressure; KHK, ketohexokinase.
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the V1b receptor. Ultimately, the activation of the survival switch
prepares the animal for a period of scarcity, resulting in increased body
weight, enhanced fat and glycogen stores, insulin resistance, elevated
blood pressure, salt sensitivity, and low-grade systemic inflammation
(Table 1). This aids survival by increasing the energy stores required
for hibernation, long-distance migration, nesting, or other situations in
which food, water, and oxygen are less available.

In nature, dietary fructose from excessive intake of fruit provides a
major pathway to activate this survival response, much like what oc-
curs in the autumn when bears prepare for hibernation. However,
fructose is also produced in the body via the polyol pathway, in which
glucose is converted to fructose [32–36] (Figure 2). The rate-limiting
enzyme in the polyol pathway is aldose reductase, and its activity is
stimulated during times of stress, such as when nutrient delivery is
impaired (hypoxia or ischemia) [32, 37], when water supplies are low
(dehydration, hyperglycemia, and hyperosmolarity) [8], or when uric
acid levels are high (reflecting degradation of nucleotides and ATP,
suggestive of an energy crisis) [38].

Most fructose is metabolized in the liver and intestine, although
some is metabolized in other tissues, such as the kidney and brain.
However, it is the metabolism of fructose in the liver that is critical for
inducing features of metabolic syndrome because mice that have
fructokinase knocked out in the liver are protected from fructose-
induced weight gain and metabolic syndrome [17]. Although intake
of fructose is a major pathway to activate the biological switch, other
foods can also stimulate fructose production in the body and induce
features of metabolic syndrome (Figure 2) [14, 39, 40]. These include
foods that provide the glucose substrate for the polyol pathway, such as
high glycemic carbohydrates, and foods that stimulate aldose
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reductase, such as salty foods and alcohol. Umami foods (especially
processed red meats, organ meats, shellfish, and beer that is rich in
yeast extracts) also engage the purine degradation pathway leading to
uric acid [14, 39, 40] (Figure 2). These foods increase fructose pro-
duction in the liver and other organs [36, 41], thereby activating the
survival switch and inducing metabolic syndrome [14, 39, 40]. Indeed,
the 3 tastes (sweet, salt, and umami) that identify pleasurable foods
likely developed to stimulate the intake of foods that could activate the
survival switch, whereas bitter and sour tastes help identify foods that
might contain toxins [42].

Humans have put this biological switch into overdrive by the means
of 2 historic events. First, we are more sensitive to the effects of
fructose because the enzyme uricase was lost in our primate ancestors
because of a series of mutations in the uricase gene millions of years
ago, leading to higher uric acid levels [9] and a greater metabolic
response to fructose [43, 44]. Indeed, this mutation likely provided a
significant survival advantage that saved our species from extinction
during the seasonal starvation that occurred in the middle Miocene
subepoch [9].

The second more proximate factor has been the dramatic rise in the
intake of added sugars that contain fructose and glucose, such as table
sugar (sucrose) and high-fructose corn syrup (HFCS) [13]. The West-
ern diet contains a high amount of fructose (primarily from sucrose and
HFCS) and foods that stimulate fructose production (high glycemic
carbohydrates, alcohol, and salty foods) or those that readily generate
uric acid (umami-rich foods), all of which engage the survival switch.
Thus, many humans are activating this survival mechanism intermit-
tently, and the degree of activation is influenced by the amount and
speed of ingestion [45] and genetic and environmental factors.

Mobile User



FIGURE 2. The process by which foods and stress engage the fructose survival pathway. Fructose can come directly from the diet (such as added sugars
containing sucrose or high-fructose corn syrup [HFCS]) or from high glycemic carbohydrates. The latter provides excess glucose that can be converted via the
polyol pathway to fructose because of activation of the rate-limiting enzyme aldose reductase. Aldose reductase can also be activated by high osmolality, which
can result from ingestion of salty foods, high glycemic foods, or alcohol. In turn, the metabolism of fructose activates the survival switch. Interestingly, umami
foods rich in glutamate and/or purines (such as AMP or inosine monophosphate [IMP]) can also activate the switch distal to the fructose step. KHK,
ketohexokinase.
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Interestingly, whole fruits tend not to activate this pathway owing to a
relatively low fructose content in individual fruits and the presence of
neutralizing factors (such as fiber, vitamin C, potassium, and flavanols)
and because the small intestine metabolizes some fructose before it
reaches the liver and brain [46].

Neuron Survival in the Resting and Hypoxic State
The human brain requires ~20% of the overall energy at rest, of

which most is used by the neurons (70%–80%) [47]. The high energy
needs of neurons are accomplished by mitochondrial oxidative phos-
phorylation (OXPHOS) of glucose, which requires sufficient oxygen to
be present. The neurons themselves have a poor backup capacity
because they generate very little ATP from glycolysis because of an
impaired ability to upregulate phosphofructokinase [48]. β-Oxidation
of fatty acids is also limited, which may relate to the higher oxygen
requirements compared with glucose oxidation, enhancing the risk of
local hypoxia [49].

The favored fuel for neurons is glucose, and experimental evidence
has shown that providing glucose can improve cognitive responses to
challenging tasks [50]. When blood glucose levels are low, the
neighboring astrocytes provide fuel to the neurons. Astrocytes mini-
mize their own energy and oxygen needs by relying on glycolysis.
They then provide the lactate they generate to the neurons, which is
used as a substrate for mitochondrial respiration (the lactate shuttle)
[51]. Astrocytes also store glycogen that can be broken down to
glucose during fasting, providing glucose to the neurons when systemic
delivery is impaired [52]. In addition, the breakdown of fat during
fasting releases ketone bodies from the liver that can be used by neu-
rons to generate acetyl-CoA, which can assist mitochondrial
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respiration; however, this fallback strategy provides only 60% of the
energy needed by the brain [53].

The astrocyte has a key role in neuronal health in the setting of food
or oxygen deprivation. Indeed, mild hypoxia upregulates glycolysis in
cultured astrocytes while decreasing mitochondrial respiration [54].
This is linked with activation of the transcription factor HIF1-α with
stimulation of fructose metabolism and insulin resistance pathways
[54]. However, if stress is further increased, both glycolysis and
OXPHOS are inhibited, which can lead to the death of the astrocyte.
Experimental studies suggest that astrocytes can survive when incu-
bated with Aβ amyloid by increasing glycolytic activity; however, if
glycolysis is blocked, astrocytes develop reactive gliosis and die by
apoptosis while Aβ amyloid accumulates further [55].

Fructose, Foraging and AD
The fructose survival pathway helps preserve critical brain func-

tioning during starvation by inducing systemic insulin resistance that
preferentially provides glucose to the brain (Table 2). The pathway also
stimulates foraging, which costs energy; however, this is compensated
for by reducing resting energy metabolism. However, given the brain’s
significant energy needs, how does this pathway affect cerebral energy
metabolism?

Foraging involves a specific behavioral response. It requires rapid
assessment (limiting deliberation), impulsivity (limiting self-control
and reasoning), exploratory behavior, and risk-taking (limiting recent
memory). Some aspects of foraging are mediated by stimulation of the
anterior cingulate cortex and visual (occipital) cortex [56, 57]. The
anterior cingulate is also involved in the hunger response to fasting
[58]. However, much of the foraging response is enhanced by



TABLE 3
Parallels between early Alzheimer’s disease and intracerebral effects of fructose metabolism

Characteristic Early Alzheimer’s disease Fructose metabolism

Factors associated with increased risk Diet (sugar, high glycemic, and high salt) Diet (sugar, high glycemic, and high salt)
Phenotype (diabetes, obesity, and metabolic
syndrome)

Phenotype (diabetes, obesity, and metabolic
syndrome)

Factors associated with decreased risk Diet (vegetables and dairy) Diet (vegetables and dairy)
Preferential regions affected Hippocampus, entorhinal cortex, posterior cingulate

cortex, middle temporal gyrus, and sensomotor
cortex

Hippocampus,posterior cingulate cortex, thalamus
and cerebral cortex

Glucose metabolism Decreased cellular uptake (decreased insulin
receptors)

Decreased cellular uptake (decreased insulin
receptors)

Decreased metabolism Decreased metabolism
Bioenergetics Decreased glycolysis (possible early stimulation) Decreased glycolysis (possible early stimulation)

Reduced mitochondrial function Reduced mitochondrial function
Reduced ATP level Reduced ATP level

Fructose metabolic pathways Increased AMPD2, increased fructose and sorbitol
levels, and uric acid elevated in early disease

Increased sorbitol and fructose levels, increased
AMPD2 activity, and increased uric acid in early
disease

AMPD2, AMP deaminase-2.

TABLE 2
Beneficial effects of the fructose survival switch on brain function

Response Mechanism Outcome

Stimulate hunger Stimulate orexin Increase food intake and fat stores
Impair satiety Induce central (hypothalamic) leptin resistance Disrupt normal weight regulation
Induce metabolic syndrome Vasopressin synthesis and release with engagement of V1b

receptors
Stimulate fat production (metabolic water) and
features of metabolic syndrome

Stimulate foraging Reduce glucose metabolism in special regions of the brain Enhance the ability to find food
Preserve Glucose Delivery to Brain Induce Systemic Insulin Resistance Outcome Reducing glucose uptake by muscle saves

glucose for metabolism by the brain
Reduce energy metabolism in the brain Reduce glucose metabolism in special regions of the brain Help conserve overall energy needs

V1b, vasopressin 1b.
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inhibiting activity in the cortical regions involved in control and
reasoning, by inhibition of the posterior cingulate cortex involved in
disengagement from foraging [59] [60], and by inhibiting activity of
the entorhinal cortex that reduces attention to time. Inhibition of recent
memory (hippocampus and entorhinal cortex) also lessens the resis-
tance to enter areas known to be dangerous, as does inhibition of the
prefrontal cortex involved in self-control. Thus, the stimulation of
foraging is coupled with significant regional reduction in brain energy
metabolism, which could also conserve energy in low food availability
settings (Table 3).

Several studies have evaluated the contrasting effects of fructose
and glucose on brain metabolism and the foraging response [61–63].
Comparing fructose and glucose responses is difficult because, as
mentioned, glucose can be converted to fructose in the body and vice
versa [39, 64]. Indeed, if glucose is administered to maintain serum
glucose levels of 200 mg/dl, fructose levels increase in the brain after
~30 min and peak at 2 h [65]. However, the studies that evaluated the
differences between fructose and glucose in cerebral metabolism using
BOLD MRI were performed early (~15 min), thus making it more
likely to reflect true differences between fructose and glucose. The
striking finding from these studies was that fructose reduced blood flow
to the posterior cingulate cortex, the hippocampus, the thalamus, and
the occipital cortex [61]; however, blood flow increased to the area of
the visual cortex associated with food reward [63]. Cortical blood flow
also decreased [62]. Fructose administration also stimulated hunger
and desire for food [63]. These responses are consistent with a stim-
ulation of the foraging response. In contrast, glucose inhibited blood
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flow to the hypothalamus, thalamus, insula, anterior cingulate, and
striatum [61] while stimulating blood flow to the cortex [62]. These
responses are expected to inhibit not only the foraging response but
also responses involving appetite and reward.

One of the earliest findings in AD is a reduction in glucose meta-
bolism and intracellular ATP levels in the hippocampus, entorhinal
cortex, posterior cingulate cortex, and middle temporal gyrus. In
contrast, a study of AD has shown that the anterior cingulate and oc-
cipital cortex are typically spared [66]. This corresponds very well to
how fructose affects these regions and is in opposite to that observed
with glucose (Table 3).

We hypothesized that the fructose-dependent reduction in cere-
bral metabolism in these regions was initially reversible and meant
to be beneficial. However, the chronic and persistent decrease in
cerebral metabolism driven by recurrent fructose metabolism leads
to progressive brain atrophy and neuron loss with all of the features
of AD.
Evidence for Intracerebral Fructose Metabolism as a
Contributor to AD

The brain can generate and metabolize fructose
Our hypothesis suggests that local fructose generation and meta-

bolism may be the critical factor for how fructose induces AD because
under normal circumstances, only 1%–2% of ingested fructose reaches
the brain [67]. Indeed, the brain is capable of producing fructose. As
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mentioned earlier, simply raising blood glucose levels increases brain
fructose levels in healthy humans [65]. Raising serum osmolality in
mice by dehydration or salty food also stimulates fructose production
in the brain (hypothalamus) [18]. Dietary fructose may also increase
fructose production in the brain, possibly by raising uric acid levels in
the brain. For example, acutely raising serum uric acid increases uric
acid in both the hypothalamus [40] and the hippocampus [68, 69] in
association with local inflammation. In turn, uric acid stimulates
fructose production and metabolism [36, 70].

The brain also expresses both fructokinase and AMPD2 [71, 72].
Fructokinase (KHK) activity is high in the brain, and the injection of
fructose into the hypothalamus of rats causes local ATP depletion and
hunger [71, 73]. Interestingly, most KHK appears to be the isoform A
[74]. Although this isoform does not typically induce ATP depletion in
the liver, the relatively lower affinity of the aldolase isozymes present
in the brain (aldolase A and aldolase C) toward fructose-1-phosphate
[75] makes it likely that fructose-1-phosphate will accumulate in the
brain, leading to local phosphate depletion with activation of AMP
deaminase, uric acid generation, and the subsequent reduction in ATP.
Risk factors for AD are associated with fructose
metabolism

The risk of AD is known to be increased by diets high in table sugar
(sucrose) or HFCS [76–78], high glycemic carbohydrates [78, 79],
salty foods [80, 81], and alcohol [82]. Likewise, processed meats rich
in umami also increase the risk of dementia [83, 84]. All of these foods
are associated with fructose production or direct engagement of the
fructose survival pathway [14, 39, 40, 85] (Table 3).

Aging is also associated with AD. Because diets high in carbohy-
drates and salt characterize much of the diets of the general population,
chronic endogenous fructose production could potentially explain this
association. Consistent with this hypothesis, chronic intake of a diet
containing 50% carbohydrates caused aging-associated kidney disease
despite being low in sugar (<5%) but was nevertheless completely
prevented in mice unable to metabolize fructose (KHK-knockout mice)
[86]. This suggests that long-term intake of a Western diet, which
typically contains 50% carbohydrates, might generate enough endog-
enous fructose to increase the risk of AD. Other risk factors for AD
include obesity, metabolic syndrome, insulin resistance, and diabetes
[87–94], all of which are linked to the intake of foods that either contain
fructose or stimulate fructose production. Traumatic brain injury is
another risk factor for AD and results in local ishemia that is expected
FIGURE 3. Evidence for activation the polyol pathway in the brains of patients
occur from the conversion of glucose to sorbitol and then to fructose via the polyo
fructose (B) in the postmortem brains of 9 patients with Alzheimer’s disease c
cingulate gyrus; ENT, entorhinal cortex; HIP, hippocampus; MOT, motor cortex;
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to increase local fructose production. In fact, hypoxia stimulates fruc-
tose metabolism in astrocytes [54]. Likewise, in ischemic contused
spinal cords in rats, there is local activation of the polyol pathway that
mediates neuronal inflammation and loss [95].
Fructose is elevated in the brain of patients with AD
There is also evidence that fructose production and metabolism are

increased in the brains of patients with AD, especially early in the
disease before marked neuron loss and atrophy. One study used mass
spectrometry to measure components of the polyol pathway in post-
mortem regions of the brains of 9 subjects with AD and 9 age-matched
controls. Sorbitol and fructose levels (both components of the polyol
pathway) were significantly elevated, averaging 3–5-fold higher in all
regions of the brain studied, including the hippocampus, entorhinal
cortex, middle temporal gyrus, cingulate cortex, sensory and motor
cortex, and cerebellum (Figure 3) [96]. One control subject also had
high levels of fructose and sorbitol but had no premortem evidence of
dementia; however, the patient had preclinical AD, as noted by low
brain weight and Braak stage II histopathologic changes [96].

Fructose metabolism consumes ATP [30]. This phenomenon is
associated with AMP accumulation that is metabolized by AMPD2 to
generate ammonia, hypoxanthine, and, eventually, uric acid (Figure 1).
Interestingly, the brains of individuals with AD have increased
expression and activity of AMPD2, with no change in AMP
deaminase-3 [72]. Early AD is also associated with the release of
ammonia; however, this eventually decreases as the disease progresses
[97, 99]. Fructose metabolism also produces large amounts of lactate
[98]. Perhaps not surprisingly, lactate levels are 4-fold higher in the
brains of subjects with early AD compared to controls with no AD [99].

A metabolomic study of cerebral spinal fluid (CSF) found higher
hypoxanthine and xanthine levels in subjects with mild cognitive
impairment (MCI) than in controls, and xanthine concentration was
also higher in subjects with AD [100]. Uric acid levels were also 25%
higher in subjects with than in normal controls, and uric acid correlated
with total tau protein when controls, MCI, and AD measurements were
combined [100]. Another study confirmed a positive association of
serum uric acid with impaired cognitive function (determined by
testing with the mini-mental state examination) in subjects with MCI
[101]. In contrast, subjects with AD appeared to have lower brain uric
acid levels than controls [102].

The observation that brain (or CSF) uric acid levels are higher in
MCI and decrease as the disease progresses may be explained by the
with Alzheimer’s disease. The endogenous production of fructose can only
l pathway. One study found ~4–5-fold higher levels of both sorbitol (A) and
ompared with a similar number of controls [96]. CER, cerebellum; CING,
SEN, sensory cortex; TEM, middle temporal gyrus.
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progressive decrease in intracellular ATP production associated with
progressive impairment in mitochondrial function. Because uric acid is
largely generated from the degradation of ATP, less uric acid will be
produced as ATP production and turnover decrease. Indeed, there is a
decrease in brain ATP levels of ~7% in early AD that progressively
worsens over time [103]. This might constitute a negative feedback
system in an otherwise positive feedback system. We found that
fructose induces less of a rise in uric acid in individuals with type 2
diabetes and obesity, which also could be explained by lower intra-
cellular ATP production and turnover [104].
Could fructose metabolism contribute to cerebral
glucose hypometabolism and mitochondrial
dysfunction in AD?

Cerebral glucose hypometabolism and mitochondrial
dysfunction in AD

An early finding in AD is a reduction in the cerebral metabolic rate
for glucose (CMRglc), as measured by [18F]-fluoro-2-deoxy-D-glucose
positron emission tomography (FDG-PET) scan [99, 105–107]. The
primary sites involved are the hippocampus, entorhinal cortex, and
parietal, temporal, and posterior cingulate cortex [105, 108]. This
reduction in CMRglc is associated with a 50% reduction in ATP pro-
duction from glucose metabolism and, overall, a 20% reduction in
brain ATP production [109].

One mechanism for hypometabolism is decreased glucose uptake
[108]. This is mediated in part by a reduction in glucose transporter
(GLUT)1 in the astrocytes andGLUT3 in the neuronsof patientswithAD
[110, 111]. Although much of the brain does not require insulin for the
uptake of glucose [112, 113], certain regions in the brain, such as the
hippocampus, hypothalamus, striatum, and parietal and frontal regions of
the cerebral cortex, are largely influenced by insulin [107, 114].GLUT4 is
the main glucose transporter that is insulin-dependent and is expressed in
neurons in the hippocampus, hypothalamus, sensorimotor cortex, and
cerebellum [110]. InAD, a reduction inboth insulin and insulin receptorA
(IR-A) is associatedwith insulin resistance [110, 115, 116].Consequently,
impairment in GLUT4 function occurs, which has a role in impairing
cognitive function, especially in the hypothalamus [50].

Although decreased glucose uptake is one mechanism for reduced
glucose metabolism, AD is also associated with a decrease in the ac-
tivities of enzymes involved in glucose metabolism, including phos-
phofructokinase, phosphoglycerate mutase, aldolase, glucose-6-
phosphate isomerase, and lactate dehydrogenase [110], which could
reflect adjustment to a low ATP state. These findings are relevant
because the resting state FDG-PET does not distinguish between a
reduction in the availability of glucose or reduced use (demand). The
possibility that the latter may be more important than commonly
recognized is demonstrated by 2 studies that measured glucose levels in
AD and found local glucose levels to be high [96, 111]. Furthermore,
an FDG-PET scan performed with cognitive stimulation in subjects
with early AD revealed increased CMRglc and blood flow [117]. This
suggests that reduced glucose metabolism is only partially due to
reduced glucose delivery [105].

The relevance of this finding is that the survival switch suppresses
ATP production with a focus on reducing energy demands at rest but
not when active (foraging) [19]. If the system is analogous to the brain,
one would also expect that fructose might similarly lower resting brain
ATP levels but retain the capacity to increase brain ATP levels in
response to challenging tasks. Furthermore, reducing glucose
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metabolism with high levels of glucose present owing to reduced
metabolism would allow plenty of substrate for fructose generation via
the polyol pathway.

Cerebral glucose hypometabolism in AD is also associated with
changes in energetics and mitochondrial metabolism. Astrocytes,
which normally generate two-thirds of their ATP equivalents via
glycolysis [118], show reduced glycolysis with decreased lactate pro-
duction [51] and progressive senescence [119]. Neurons also reduce
ATP production owing to a decrease in OXPHOS [51]. This also occurs
in aging [120, 121]. Neurons may produce some energy through
glycolysis (at least in aging) because lactate uptake from neighboring
astrocytes may be impaired because of a reduction in lactate trans-
porters (monocarboxylate transporter proteins) in the neurons [122].

Oxidative stress is also increased in AD, as noted by the accumu-
lation of malondialdehyde [123], and is associated with mitochondrial
oxidative stress and mitochondrial loss [124]. Microglia are also con-
verted from M2 macrophage-type cells (that use mitochondrial
OXPHOS) to inflammatory M1-type macrophages that use glycolysis
[47], thereby contributing to local neuroinflammation [125]. Interest-
ingly, peripheral white cells in patients with AD show reduced aconi-
tase, which would reduce the activity of the citric acid cycle critical for
ATP production [126]. A reduction in aconitase is a characteristic
consequence of fructose metabolism [15, 31].

The administration of fructose to laboratory animals can also induce
similar changes in the brain, as observed in early AD (Table 2). For
example, both fructose [127–129] and fructose-containing sugars [130,
131] can induce an impairment of spatial memory. Rats administered
with fructose in drinking water for 8 wk developed hippocampal at-
rophy with reduced glucose uptake, decreased expression of phos-
phorylated IR-A and insulin receptor substrate-1, mitochondrial
dysfunction, oxidative stress with stimulation of NF-κB and inflam-
matory cytokines, and a decrease in ATP compared with rats receiving
regular water [131]. Giving fructose in the drinking water (10%) for a
longer time (16–18 wk) model of AD resulted in obesity, decreased
spatial memory, increased locomotor activity, cerebral insulin resis-
tance (with low phosphoinositide 3-kinase (PI3K) activity and protein
kinase B (Akt) levels), increased glycogen synthase kinase 3 beta
(GSK3β) expression, lower acetylcholine content, and the accumula-
tion of tau protein containing neurofilaments and Aβ amyloid plaques
in the hippocampus compared with rats given regular water [132–134].
Administration of high doses of fructose to rats is also associated with
greater mortality after stroke and is assoviated with a loss of astrocytes,
greater neuroinflammation with hyperphosphorylation of tau protein
[135], and hippocampal gliosis [136]. Fructose administration is also
associated with more β-amyloid deposition in other animal models of
AD [137, 138]. In all of these studies, the control groups were animals
on regular chow.

Fructose has also been reported to directly inhibit mitochondrial
OXPHOS in neurons and lead to neuron toxicity [139]. Similarly,
directly injecting fructose into the hypothalamus causes local ATP
depletion [140]. There is also evidence that astrocytes can be affected
by fructose. In one study, pregnant mice were given fructose, and as-
trocytes were isolated from the infant mice. These astrocytes showed
suppressed expression of the GLUT1 transporters, decreased glucose
uptake, decreased glycolysis, decreased lactate generation, reduced
glycogen stores, and decreased mitochondrial OXPHOS and mito-
chondrial biogenesis [141].

As mentioned earlier in the article, fructose may induce metabolic
effects as a consequence of increasing uric acid levels in the brain.
Hyperuricemic rats also develop memory defects (as demonstrated
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with the Morris water maze) associated with increased hippocampal
uric acid levels and local inflammation [68, 69]. Inflammation in the
hippocampus can also be achieved by stereotactic infusion of uric acid
[68] and is associated with hippocampal gliosis on MRI, and similar
findings can be observed in hyperuricemic subjects [68]. The ability of
uric acid to induce inflammation in the hippocampus is also consistent
with a study showing that uric acid induces oxidative stress in
neuronal-derived cells [142].

Other supporting data

Apolipoprotein E4 polymorphism
Apolipoprotein E4 (ApoE4) polymorphism is a major risk factor for

AD, raising the question of how it relates to the fructose hypothesis.
Notably, ApoE4 carriers show reduced cerebral glucose metabolism by
positron emission testing and reduced uptake of glucose into astrocytes
[143]. ApoE4-derived astrocytes also show enhanced glycolysis
despite less mitochondrial OXPHOS and worse mitochondrial
dysfunction compared with that with ApoE2 or ApoE3 astrocytes
[143]. The relative similarities in the effects of fructose on the brain to
that observed with the ApoE4 polymorphism suggest parallel patho-
genic mechanisms.
Species specificity of AD
AD is relatively specific to humans, and although some primates

show evidence of β-amyloid deposition in the brain, aggregated tau
proteins are absent [144]. However, hibernating ground squirrels have
been observed to have paired helical filaments (neurofibrillary tangles)
of phosphorylated tau protein in the brain during hibernation, and this
is reversible after arousal in the spring [145]. Given the observed as-
sociations of fructose [135] and uric acid [100] with tau-protein
accumulation, it raises the possibility that the tau protein could be a
response that initially provides some protection during hypoxia.
Studies on brain insulin receptors in knockout mice
Our hypothesis suggests that fructose blocks brain glucose meta-

bolism to aid survival by reducing total energy needs, stimulating
effective foraging and increasing weight; however, if severe and pro-
longed, fructose metabolism would lead to brain atrophy and possible
dementia. Thus, it is of interest that blocking insulin signaling in the
brain can extend the life span of Drosophila and Caenorhabditis ele-
gans. For example, selectively knocking out insulin receptor substrate-2
(Irs2) in the brain of mice extends life span coupled with the develop-
ment of obesity and insulin resistance [146]. However, knockout mice
have a reduced brain size (30%). In contrast, heterozygous mice lacking
Irs2 live longer than normal mice but still develop metabolic compli-
cations; however, they do not have a reduced brain size [146].

Challenges and Limitations

If uric acid is important in driving AD, why is it low in
patients with AD?

Numerous studies have reported that subjects with AD have low
serum uric acid levels, suggesting that this might be important to the
pathogenesis [147]. However, although serum uric acid may reflect
fructose metabolism, it also is a general marker of nutrition status [148].
Clinical manifestations of AD are often preceded by significant weight
loss [125, 149, 150], which may account for the lower serum uric acid
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levels on presentation ofAD.Thismay also explainwhyobesity predicts
AD in midlife but actually protects from AD late in life [151].

Some individuals with AD also lose excessive amounts of uric acid
in their urine because of a defect in the proximal tubule. In one study of
18 randomly selected individuals with AD, one-third had abnormally
high urate excretion (defined as a fractional excretion of uric acid of
>10%) [152]. Interestingly, this finding may reflect the activation of
the polyol-fructose pathway in the kidneys [153, 154].

Serum uric acid may also not reflect intracellular or brain uric acid
levels. For example, certain foods, such as salt, will increase liver uric
acid levels that reduce hepatic ATP levels despite no change in serum
uric acid [14].

One way to resolve the controversial epidemiological data on
whether uric acid is associated with increased [155, 156] or lower risk
[157] of AD is to evaluate the effect of lowering uric acid levels on
incident dementia. Here, studies found that uric acid–lowering therapy
reduced the risk of dementia compared with that in subjects with un-
treated gout [158–160]. In one study, the use of febuxostat (a xanthine
oxidase inhibitor) reduced the risk of dementia by 80% [160]. Another
study reported a dose-dependent relationship, with higher doses of
allopurinol and febuxostat providing greater protection [161].
What about the evidence that uric acid is an antioxidant?
Uric acid can function as an antioxidant and block peroxynitrite

[162]. This observation has suggested that uric acid might be bene-
ficial, especially in Parkinson’s disease and multiple sclerosis.
However, clinical trials in which serum uric acid was raised by
administering inosine were negative in both diseases [163, 164].
Furthermore, the use of inosine is problematic because although it
increases serum uric acid, it can enter the purine salvage pathway to
stimulate ATP production [165]. Some investigators have adminis-
tered allopurinol with inosine to block uric acid formation because
this encourages more of the inosine to be used to increase ATP levels,
and some preliminary studies suggest a benefit of this approach in
Parkinson’s disease (166).
If AD is driven by fructose, should AD have increased in
parallel with obesity and diabetes?

Given that the risk for AD is increased by Western diets, obesity,
and diabetes, one might predict that the sporadic (nonfamilial) form of
AD should have increased dramatically during the 20th century. Un-
fortunately, there are no good data to determine whether this is the case.
Although AD was reported infrequently in the early 20th century, it
was initially thought to be distinct from “senile” dementia. Neverthe-
less, there is evidence from insurance companies, such as Blue Cross/
Blue Shield, that early-onset AD increased dramatically between 2013
and 2017 (167). Today, AD affects 10% of subjects aged>65 y in USA
(168).
Summary and Future Treatment Options

Here, we suggest that the effects of fructose on the brain were
originally to stimulate foraging and reduce cerebral energy demands.
Although the pathway was meant to be beneficial, the mutation in
uricase amplified the switch, and the introduction of the Western diet
provided ample fuel to put it in high gear, with the attempt to conserve
energy resulting in a severe reduction in the energy required to maintain
the needs of the neurons. Indeed, the wandering response, which is very
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common in AD (169), may signify a persistent foraging response
despite massive neuronal loss.

Although available data support our hypothesis(es), further studies
are needed, particularly with a focus on individuals at risk, individuals
with MCI, and subjects with early AD. Treatment trials that interrupt
the pathway, including nutraceuticals, drugs that are currently available
[132–134, 160], and future therapeutics, represent an important op-
portunity. Given that the fructose hypothesis can provide a complete
pathway from inception to end-stage AD, there is a compelling need for
further investigation into the role of fructose and diet in this condition.
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